
CSE 451: Operating Systems

Hard Lessons Learned

Windows

RtlZeroMemory

Gary Kimura

2

Zero Memory

• What can be simpler?
– Zero a register and do a lot of stores.

• Make is faster by picking a large register.
– Floating-point registers are pretty big

• Same optimization can be used in Copy Memory.

Make interrupt handling fast

• Save only those registers needed by the device
drivers.

• What device driver in their right mind would do any
floating point arithmetic?

1/5/2026 3

My Sad Story
• Everyone in the Windows team ran nightly stress

tests of each new build.

• A piece of the file system started bug checking every
night on multiple test machines.

• A Showstopping bug was assigned to me.

• Examination of the code didn’t reveal any obvious
problems. It was code that was working fine for a
long time.

• Finally in desperation I added an assert that after
calling RtlZeroMemory() checked that the memory
was indeed all zeros.

• My check caught a lot of machines that night…

1/5/2026 4

Now the fun begins

• My boss’s boss had optimized interrupt handling to
not save the floating-point registers.
– Because no one needs to do floating point arithmetic in an

interrupt handler…

• RtlCopyMemory and RtlZeroMemory had also been
optimized to use the larger floating-point registers.
– Because is requires fewer instructions…

• Another software engineer started calling
RtlCopyMemory in an interrupt handler.
– Just because…

1/5/2026 5

Fateful Sequence of Events

• I call RtlZeroMemory from the File System (in Kernel
mode but not in an interrupt handler)

• While RtlZeroMemory is zeroing out memory an
interrupt occurs

• The interrupt device handler calls RtlCopyMemory

• When control returns to me the floating-point register
is no longer zero, but contains what was used in
RtlCopyMemory

• RtlZeroMemory continues doing stores, but now with
a nonzero floating-point register. How did this
happen?

• Someone had to tell my boss’s boss that his
optimization didn’t work...

1/5/2026 6

Moral of the Story

• Many seemingly good optimizations have unforeseen
consequences.

• OS development work is full of such examples.
Where modifying one piece of code can have
unforeseen consequences in unrelated modules.

• While I was just the innocent victim of the bug. I was
also tasked with chasing it down.

1/5/2026 7

1/5/2026 8

About Alignment

• With respect to physical memory there is natural data
alignment (char, short, long, longlong)

• How does the hardware handle aligned and
unaligned loads and stores

• These details are usual hidden from application
writers, because most compliers and linkers will
naturally align the data

• But some generic functions e.g., Zero and Copy
Memory might stumble upon this.

• Let’s see what we can do to make life easier and
more efficient…

1/5/2026 9

Now comes the tradeoffs

• Let’s consider Zero and Copy memory

• One option, let the hardware handle it all.

• Another option, force the user to only make “well”
aligned requests.

• Yet another option, let the hardware handle it all and
educate the user that using aligned buffers increases
performance.

• And yet another option, we determine the alignment
of the buffer and special case how to handle it.

• The last option, tell the user to zero (copy) their own
buffer

1/5/2026 10

