CSE 451: Operating Systems
Hard Lessons Learned

Windows
RtlZeroMemory

Gary Kimura

Zero Memory

 What can be simpler?
— Zero aregister and do a lot of stores.

« Make is faster by picking a large register.
— Floating-point registers are pretty big

« Same optimization can be used in Copy Memory.

Make interrupt handling fast

Save only those registers needed by the device
drivers.

What device driver in their right mind would do any
floating point arithmetic?

1/5/2026

My Sad Story

Everyone in the Windows team ran nightly stress
tests of each new build.

A piece of the file system started bug checking every
night on multiple test machines.

A Showstopping bug was assigned to me.

Examination of the code didn’t reveal any obvious
problems. It was code that was working fine for a
long time.

Finally in desperation | added an assert that after
calling RtlZeroMemory() checked that the memory
was indeed all zeros.

My check caught a lot of machines that night...

1/5/2026

Now the fun begins

My boss’s boss had optimized interrupt handling to
not save the floating-point registers.

— Because no one needs to do floating point arithmetic in an
interrupt handler...

« RtlICopyMemory and RtlZeroMemory had also been
optimized to use the larger floating-point registers.
— Because is requires fewer instructions...

« Another software engineer started calling
RtiICopyMemory in an interrupt handler.
— Just because...

1/5/2026

Fateful Sequence of Events

| call RtiZeroMemory from the File System (in Kernel
mode but not in an interrupt handler)

While RtlZeroMemory is zeroing out memory an
Interrupt occurs

The interrupt device handler calls RtiCopyMemory

When control returns to me the floating-point register
IS no longer zero, but contains what was used in
RtiICopyMemory

RtlZeroMemory continues doing stores, but now with
a nonzero floating-point register. How did this
happen?

Someone had to tell my boss’s boss that his
optimization didn’t work...

1/5/2026

Moral of the Story

« Many seemingly good optimizations have unforeseen
consequences.

* OS development work is full of such examples.
Where modifying one piece of code can have
unforeseen consequences in unrelated modules.

« While | was just the innocent victim of the bug. | was
also tasked with chasing it down.

1/5/2026

1/5/2026

About Alignment

« With respect to physical memory there is natural data
alignment (char, short, long, longlong)

* How does the hardware handle aligned and
unaligned loads and stores

* These details are usual hidden from application
writers, because most compliers and linkers will
naturally align the data

« But some generic functions e.g., Zero and Copy
Memory might stumble upon this.

 Let's see what we can do to make life easier and
more efficient...

1/5/2026 9

Now comes the tradeoffs

Let’s consider Zero and Copy memory

One option, let the hardware handle it all.

Another option, force the user to only make “well”
aligned requests.

Yet another option, let the hardware handle it all and
educate the user that using aligned buffers increases
performance.

And yet another option, we determine the alignment
of the buffer and special case how to handle it.

The last option, tell the user to zero (copy) their own
buffer

1/5/2026 10

